PROBING THE ELECTRONIC STRUCTURE OF PHOSPHORINS (PHOSPHABENZENES) BY ¹³C NMR SPECTROSCOPY

T. Bundgaard and H. J. Jakobsen Department of Chemistry, University of Aarhus, DK-8000 Aarhus C, Denmark

> K. Dimroth and H. H. Pohl Department of Organic Chemistry, University of Marburg/Lahn, 3350 Marburg/Lahn, Germany

(Received in UK 17 July 1974; accepted for publication 31 July 1974)

¹³C NMR has proven an extremely useful tool in studies of organophosphorus compounds. Valuable information on their geometrical and molecular electronic structure may be obtained from three sets of parameters: (i) ¹³C chemical shifts, (ii) ¹³C-³¹P nuclear spin couplings (including their signs), and (iii) ¹³C spin-lattice relaxation times (T_1) [1,2]. In connection with our current studies on phospholes [3] we have undertaken a ¹³C NMR investigation on some phosphorins (phosphabenzenes) with the purpose of probing their electronic structure. CNDO/2 and PE spectral approaches to this problem have recently been performed [4]. In this paper we report on the first determination of ¹³C chemical shifts and ¹³C-³¹P coupling constants in λ^3 - and λ^5 -phosphorins [5].

¹³C NMR parameters (Table 1) were obtained for the λ^3 -phosphorins 2,4,6-trit-butylphosphorin, 1, and 2,4,6-triphenylphosphorin, 2, and for the λ^5 -phosphorin 2,4,6-tri-t-buty1-1,1-dimethoxyphosphorin, 3. The ¹³C NMR spectra were obtained at 25.16 MHz in the FT (Fourier transform) mode on a Varian XL-100-15 spectrometer (S124-XLFT accessory, Varian 620L 16K computer) using noise and singlefrequency proton decoupling. Assignments of the spectra were made on the basis of relative intensities, NOE (nuclear Overhauser enhancement) effects, and selective proton decoupling experiments. For the phenyl-substituents the known order of the ortho and meta 13 C chemical shifts in biphenyl [6] and a comparison of the proton decoupling frequencies with the relative order of the ortho, meta, and para ¹H chemical shifts observed for a series of phenyl-substituted aromatic compounds [7] were also used. Relative signs for some of the ¹³C-³¹P coupling constants were determined using double resonance techniques described elsewhere [8]. The results are summarized in Table 1 along with the parameters obtained for similarly trisubstituted pyridines and benzenes. These permitted an estimation of the ¹³C chemical shifts for the unsubstituted phosphorins.

	in Analogously Substituted Benzenes and Pyridines $(4, 5, 6, and 7)$.						
	R ¹ R ⁶ P ² R		+ O V	$ \begin{array}{c} R \\ 4 \\ 5 \\ R \\ 1 \end{array} $			t N N
		C	H₃O OCH	3	_	,	~
+	1	<u>2</u>	2	<u>4</u>	2	<u> </u>	<u> </u>
٥ ₀₀	172.93	182.94	97.73	143.26	150.34	151.14	167.69
δ _{C2}	132.42	127.14	136.61	125.61	119.72	117.53	112.82
δ _{C4}	145.23	152.30	119.78	143.26	150.34	147.00	160.41
δ 67	144.15	39.35	35.64	141.84	35.30	140.39	38.12
δ _{C8}	128.50	33.31	33.00	128.14	31.84	127.91	30.59
6 ₀ 8	129.87			129.76		129.47	
⁶ c10	128.95			128.45		129.89	
δ _{C13}	142.75	36.68	34.64	141.84	35.30	139.56	35.38
⁸ c14	128.68	31.69	32.59	128.14	31.84	128.15	31.01
⁸ C15	129.95			129.76		129.94	
⁸ C16	128.97			128.45		129.91	
¹ J _{C2-P}	51.72	56.63	134.22				
² Ј _С 3-Р	12.17	12.44	10.26				
³ J _C 4-P	13.84	14.29	17.37				
² J _{C7-P}	24.28	21.87	5.64				
³ ^J C8-P	12.88	12.61	4.49				
⁴ Ј _{С9-Р}	~0						
⁵ J _{C10-P}	2.01						
⁴ J _{С13-Р}	3.32	2.00	1.69				
⁵ J _{C14-P}	1.80	1.54	0.98				
⁶ J _{C15-P}	0.60						
^{7 Ј} с16-Р	0.97						

<u>TABLE 1</u>. ¹³C Chemical Shifts and ¹³C-³¹P Coupling Constants in Some 2,4,6-Trisubstituted λ^3 - and λ^5 -Phosphorins (<u>1</u>, <u>2</u>, and <u>3</u>). ¹³C Chemical Shifts in Analogously Substituted Benzenes and Pyridines (<u>4</u>, <u>5</u>, <u>6</u>, and <u>7</u>).^a

$$R = -\frac{7}{12} \underbrace{\bigcirc}_{12}^{6} \underbrace{]_{10}^{9}}_{10}$$

 $R' = \frac{13}{2}$ 0 18

^aChemical shifts and coupling constants were measured from expanded spectra obtained using 256 Hz spectral width and 8K data points. Chemical shifts are in ppm downfield from internal TMS ($\nu_{TMS-1:3C} = 25.1605$ MHz; internal lock: ²H, (CD₃)₂CO) with errors less than ± 0.01 ppm. Coupling constants are in Hz with errors ± 0.03 Hz. All solutions are in (CD₃)₂CO containing ca. 3% v/v TMS: ± 0.09 m, ± 2 1.13 m, ± 3 0.50 m, ± 4 0.11 m, ± 5 1.10 m, ± 6 0.14 m, and ± 7 0.90 m.

^b δ_{C} (OCH₃) = 51.70 ppm; ²J_{P-O-C} = -1.74 Hz (sign opposite to that of ³J_{P-O-C-H}).

 λ^3 -Phosphorins. It is seen (Table 1) that the relative order of the ¹³C chemical shifts for the λ^3 -phosphorins, <u>1</u> and <u>2</u>, is similar to that obtained for the benzene and pyridine derivatives. However, a pronounced downfield shift is observed for the C2 carbons of <u>1</u> and <u>2</u> (relative to the benzene and pyridine series); this effect is similar to the extreme downfield H2 proton chemical shift reported for unsubstituted λ^3 -phosphorin [9]. Table 2 shows that the <u>differences</u> in substituent effects on the ¹³C chemical shifts for <u>1</u> and <u>2</u> exhibit the same trends as for the analogous benzene and pyridine compounds, the magnitudes being nearly the same as for the benzene series. Thus, using the observed substituent effects for <u>4</u> and <u>5</u>, we have estimated (Table 3) the ¹³C chemical shifts for the C3 and C4 chemical shifts in λ^3 -phosphorin apparently is reversed as compared to that in pyridine.

<u>TABLE 2</u>. Differences in Substituent Effects on the Ring-¹³C Chemical Shifts in Triphenyl- and Tri-t-butyl- λ^3 -Phosphorins (<u>1</u> and <u>2</u>), Benzenes (<u>4</u> and <u>5</u>), and Pyridines (<u>6</u> and <u>7</u>): $\Delta\delta_{\rm C} = \delta_{\rm C}^{\rm phenyl} - \delta_{\rm C}^{t-\rm butyl}$ (ppm).

	$\lambda^3 - Phosphorins$ <u>1</u> and <u>2</u>	Benzenes $\frac{4}{5}$ and $\frac{5}{5}$	Pyridines <u>6</u> and <u>7</u>	
Δδc2	-10.01	-7.08	-16.55	
Δ ^δ C3	+5.28	+5.89	+4.71	
Δ ^δ c4	-7.07	-7.08	-13.41	

<u>TABLE 3</u>. Estimated ¹³C Chemical Shifts ($\delta_{\rm C}$, ppm) in λ^3 -Phosphorin (Phosphabenzene) and 1,1-Dimethoxy- λ^5 -phosphorin from Observed Values in <u>1</u>, <u>2</u>, and <u>3</u> (Table 1) and from Substituent Effects in <u>4</u> and <u>5</u>. Observed ¹³C Chemical Shifts in Benzene and Pyridine (Solvent: Acetone-d₈).

	λ ³ -Phosphorin (Calc.)		rin	1,1-Dimethoxy- λ^5 -phosphorin (Calc.)	Benzene	Pyridine
From	<u>4</u>	<u>5</u>	Mean	5	(Ubserved)	(Observed)
δ _{C2}	158.3	161.3	159.8	76.1	128.66	150.10
δ _{C3}	135.5	136.1	135.8	145.6	128.66	123.91
⁸ c4	130.6	130.6	130.6	98.1	128.66	135.85

The magnitudes of the one-bond ¹³C-³¹P coupling constants in <u>1</u> and <u>2</u>(51.72 and 56.63 Hz, respectively, sign not obtained so far) are larger than ¹J_{C-P} in phosphines (P^{III}) which are usually small in magnitude and negative (e.g. in triphenylphosphine ¹J_{C-P} = -12.51 Hz [10]). The larger magnitude of ³J_{C4-P} relative to ²J_{C3-P} in <u>1</u> and <u>2</u> (also observed for <u>3</u>) is comparable to the trend ob-

served for ${}^{3}J_{C4-N}$ and ${}^{2}J_{C3-N}$ in ${}^{16}N$ -pyridine and the ${}^{15}N$ -pyridinium ion [11]. Furthermore, ${}^{2}J_{C3-P}$ and ${}^{3}J_{H3-P}$ in <u>1</u> and <u>2</u>, like ${}^{2}J_{C3-N}$ and ${}^{3}J_{H3-N}$ in ${}^{16}N$ -pyridine [7], have opposite signs. The absolute signs are unknown, however, ${}^{2}J_{C3-P}$ is probably negative due to the phosphorus lone pair effect on ${}^{2}J_{C-P}$ [1]. Finally, the large magnitude observed for ${}^{2}J_{C7-P}$ probably results from the geometrical dependence of ${}^{2}J_{C-P}$ on the orientation of the lone pair electrons on phosphorus [1].

 λ^5 -Phosphorins. The ring-¹³C NMR parameters for the λ^5 -phosphorin, <u>3</u>, differ widely from those obtained for <u>1</u> and <u>2</u>. The extreme upfield chemical shifts for the C2 and C4 carbons and the larger magnitude of ¹J_{C2-P} (= 134.22 Hz; sign not obtained, probably positive) relative to the values for the λ^3 -phosphorins show the same features as recently observed in phosphorus ylides [2,12]. However, the chemical shifts estimated for the C2 and C4 carbons in 1,1-dimethoxyphosphorin (Table 3) are more downfield than in ordinary ylides [2]. This may be attributed to delocalization in the 6π -electron system as visualized in the resonance structures

Further studies, especially directed towards the determination of the ${}^{13}C{}^{-1}H$ (one-bond and long-range) couplings and of the signs of the ${}^{13}C{}^{-31}P$ and ${}^{1}H{}^{-31}P$ coupling constants in phosphorins, are presently being undertaken.

REFERENCES

- 1. S.Sørensen, R.S.Hansen, and H.J.Jakobsen, <u>J.Amer.Chem.Soc</u>. <u>24</u>, 5900 (1972).
- 2. G.A.Gray, J.Amer.Chem.Soc. 95, 7736 (1973) and references therein.
- 3. T.Bundgaard and H.J.Jakobsen, <u>Tetrahedron Letters</u> 3353 (1972).
- 4. H.Oehling and A.Schweig, <u>Tetrahedron Letters</u> 4941 (1970). C.Batich, E.Heilbronner, V.Hornung, A.J.Ashe,III, D.T.Clark, U.T.Cobley, D.Kilcast, and I.Scanlan, <u>J.Amer.Chem.Soc</u>. <u>95</u>, 928 (1973).
- K.Dimroth, "Phosphorus-Carbon Double Bonds" in "Topics in Current Chemistry 38", Springer-Verlag, Berlin, 1973.
- 6. T.D.Alger, D.M.Grant, and E.G.Paul, J.Amer.Chem.Soc. 88, 5397 (1966).
- 7. T.Bundgaard and H.J.Jakobsen, unpublished results.
- H.J.Jakobsen, T.Bundgaard, and R.S.Hansen, <u>Mol.Phys</u>. 23, 197 (1972). S.Sørensen, R.S.Hansen, and H.J.Jakobsen, <u>J.Amer.Chem.Soc</u>. <u>95</u>, 5080 (1973).
- 9. A.J.Ashe, III, <u>J.Amer.Chem.Soc</u>. <u>93</u>, 3293, 6690 (1971).
- 10. T.Bundgaard and H.J.Jakobsen, Acta Chem.Scand. 26, 2548 (1972).
- 11. R.L.Lichter and J.D.Roberts, <u>J.Amer.Chem.Soc</u>. <u>93</u>, 5218 (1971).
- 12. H.Schmidbaur, W.Buchner, and D.Scheutzow, Chem.Ber. 106, 1251 (1973).